
Int. J. Solids Structures, 1976, Vol. 12, pp. 67-79. Pergamon Press. Printed in Great Britain

STATIC AND DYNAMIC ANALYSIS OF THE DCB
PROBLEM IN FRACTURE MECHANICS

M. SHMUELY and D. PERETZ
Department of Mechanics, Technion, Israel Institute of Technology, Haifa, Israel

(Received 18 February 1975; revised 12 May 1975)

Abstract-A finite difference scheme for treating the static and dynamic stress fields under plane-strain
conditions in the DCB, is proposed. The adequacy of the scheme is established via the static solution by
comparing the results obtained numerically with those obtained experimentally. Both the numerical and
experimental results are also compared with data available in the literature. Discrepancies found are
explained and discussed. For the numerical scheme adjusted to handle the propagating crack problem, the
results represent a situation which is close to that observed experimentally; namely, an essentially constant
steady state crack propagation speed from the start, with crack length at arrest and velocity values depending
on the initial conditions. In addition, the velocities predicted by the analysis are shown to be in good
agreement with those reported in the literature.

INTRODUCTION

The double cantilever beam (DCB) specimen (Fig. 1) is a well-established test configuration for
studying both static and dynamic aspects of fracture mechanics. When first developed as a device
for measuring fracture surface energies (or alternatively, stress intensity factors under plane
strain conditions (K1C»it was analysed by regarding the cracked portion of the specimen as a
pair of built-in cantilever beams, employing the simple beam theory [1]. Later, a two-dimensional,
linear elastic, numerical solution of the DCB static problem was proposed by Gross and
Srawley [2]. In this solution the boundary collocation procedure was used to find the coefficients
of the series terms in Williams stress function [3], by adjusting them to fit the boundary conditions
imposed on the system, provided these conditions are defined in terms of tractions only. While
the conditions along the free surfaces are well defined, there is some ambiguity in choosing the
appropriate form of the traction distribution across the loading end which would properly
represent the practical situation. The particular form of distribution assumed seems to have no
appreciable effect on the K 1 value determined from the last-mentioned analysis [4, 5]. This
analysis was thus broadly accepted as a reliable method for characterising initial crack extension.
Based on it is also the ASTM standard E399-70 T, in which a compact. DCB specimen is
recommended for testing plane strain fracture toughness of metallic materials. Referring to the
above-mentioned compact specimen, experiments show[4] that as far as displacements at the
loading end are considered, results obtained from the boundary collocation analysis do not agree
with the measured ones. This was attributed to the fact that the loading pins' holes are not
well-approximated by the analysis.

In the dynamic case as yet only one-dimensional beam models have been employed. In order
to take account of the region beyond the crack, Kanninen first proposed[6] a model which
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Fig. I. Edge cracked plate specimen under loading.
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consists of a simple Euler-Bernoulli beam lying on a Winkler elastic foundation. Later this model
was modified to include lateral inertia ending with a Timoshenko beam lying on a more
generalized elastic foundation [7].

The last mentioned model requires some information on the dynamic fracture toughness of
the material in question. Calculations were performed with a crack speed independent dynamic
toughness [7] and with crack speed dependent dynamic toughness values [8]. Results obtained
were shown to be in good qualitative and quantitative agreement with the experimental results [9].

In this paper, a two-dimensional linear elastic numerical analysis of the DCB problem by a
finite difference method is presented. Both the static and dynamic (with the time as an additional
dimension) aspects of the problem are treated. Some experiments concerning the static situation
were carried out. In order to establish the validity of the numerical scheme proposed, results
obtained for the static problem are compared with the experimental measurements. A
comparison is also made with data available in the literature. Subsequently, crack propagation
under constant displacement conditions is simulated numerically for different initial stress
intensity factors. The numerical results for the propagating crack, which is allowed to extend
when the cleavage stress at a given distance from the crack tip reaches a predetermined level,
describe a behavior close to that observed in experiments reported in the literature [9].

In the following sections, the elastic equations used are described. The appropriate finite
difference scheme is constructed and examined. Experimental and numerical results for the static
problem are presented and discussed. Preliminary results for the dynamic case are described.

2. ELASTIC EQUATIONS AND BOUNDARY CONDITIONS

The equations of motion in an elastic medium are

(1)

U and V are the displacements in the x and y direction respectively, p is the density and aij the
stress tensor.

The stress-strain relations are

= (A +2 ) au+Aav
au IL ax ay

a = Aau+(A +2 ) av
YY ax IL ay (2)

where A and IL are Lame constants, by which the dilatational and distortional velocities C I and C2

are given

(3)

Substituting (2) and (3) into (1), we obtain

(4)
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The wave eqns (4) govern the dynamic state of the elastic system under consideration. The
static solution, in which we are also interested, can be obtained by solving the time-independent
version of eqns (4), namely, a set of elliptic partial differential equations customarily solved
riumerically by interative processes. However, by employing the dynamic relaxation
method [10, 11], essentially the same numerical scheme is used for solving both the dynamic and
static problems. According to this method, eqns (4) are modified to

(5)

In eqns (5), by letting 8 be equal to zero, we obviously return to wave eqns (4), whereas if
8 > 0, successive changes in displacements, occurring in real time, correspond to successive
numerical two-point semi-iterative cycles, converging finally to the static solution. A numerical
scheme related to eqns (5) is thus easily adjusted to treat either the static problem or the dynamic
problem, just by substituting the appropriate value for 8. This enables, as will be demonstrated
later, the construction of a compact and relatively simple computer program to simulate the
fracture process in the DeB, including both fracture initiation (the static problem) and crack
extension (the dynamic problem). Moreover, the validity of the complete numerical scheme may
be verified by referring to results drawn from either the static solution or the dynamic solution.

A solution of eqns (5) corresponding to a symmetrically loaded specimen (see Fig. 2) is
symmetric with respect to the x axis. It is thus sufficient to consider the upper part of the
specimen (y ~ 0), provided that the boundary conditions related to that part are supplemented by
the symmetry conditions along the segment (y = 0; a < x ~ L). Referring to the upper part and
considering a fixed grips case, the following conditions should be satisfied:

ayy = 0; axy = 0 on y=O for O~x<a

v=O; axy = 0 on y =0 for a<x~L

axx = 0; axy = 0 on x =O,L for O~y~H (6)

ayy = 0; axy = 0 on y=H for O~x~L

V(xo, Yo) = D for all t,

where D is the constant deflection value of the point (xo, yo) at which the load is provided, and a
is the crack length.

By using the constitutive eqns (2), those conditions (6) which involve stresses are expressed in
terms of displacements and their derivatives, so that both conditions (6) and the differential eqns
(5) are then related to the same unknowns.
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Fig. 2. Scheme of grid used.
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3. FINITE DIFFERENCE SCHEME

Equations (5) subject to conditions (6) are solved by a method of finite differences, similar to
that used by Shmuely and Alterman[12] to analyse crack propagation in infinite plates.

A grid is imposed on the upper half of the specimen, Fig. 2. For convenience, the mesh size h
is taken to be the same in both the x and y directions, The value of h is such that both the length
L and the height H of the specimens are integer multiples of h. The grid is extended beyond the
half specimen by adding the four special grid lines x = -h/2, x = L +h/2, y = -h/2 and
y = H + h/2 which form the grid boundaries.

Denoting the time increment by k and using central difference approximations, the finite
difference formulation of equations (5), valid at the inner part of the grid, is

U(x, y, t + k) = 1/(1 +0'5kO){2U(x, y, 0 - (1- 0'5kO)U(x, y, t - k)

+ (C,k/h)2[U(X + h, y, 0 - 2U(x, y, 0 + U(x - h, y, 0]

+ (C1
2

- C/)(k/2h)2[V(X + h, y + h, 0 - V(x + h, y - h, 0
- V(x - h, y + h, 0 + V(x - h, y - h, t)]

+ (C2k/h)2[U(X, Y + h, 0-2U(x, y, t)+ U(x, Y - h, t)]}

V(x, y, t + k) = 1/(1 + 0'5kO){2 V(x, y, 0 - (1- 0'5k) V(x, y, t - k)

+ (C2k/h)'[V(x + h, y, 0 - 2V(x, y, 0 + V(x - h, y, 0]

+(C I
2

_ C/)(k/2h)2[U(X + h, y + h, 0- U(x + h, y - h, t)

- U(x - h, y + h, 0 + U(x - h, y - h, 0]

+ (C,k/h)2[ V(x, Y + h, 0 - 2V(x, y, 0 + V(x, Y - h, t)]}.

(7)

The displacements at mesh points lying on the special lines are determined by satisfying the
boundary conditions. By approximating the conditions au = axy = 0 on x = 0 and x = L, we
obtain respectively for points on the grid lines x = -h/2 and x = L + h/2

( -h/2 ) (h/2 ) (C2
-2C2

2

)[ ( h/2 ) (h/2 )JU L+h/2,y,t =U L-h/2,y,t ± 2C/ V L_h/2,y+h,t -V L_h/2,y-h,t

( - h /2 ) (h /2 ) [( h/2 ) (h /2 )JV L+h/2,y,t =V L-h/2,y,t ±0·5 U L_h/2,y+h,t -U L-h/2,y-h,t .

On the grid lines y = - h /2 and y = H +h /2, we obtain

( - h /2 ) ( h /2 ) [( h /2 ) ( h /2 ) JU x'H+h/2,t =U x'H_h/2,t ±0·5 V x+h'H_h/2,t -V x-h'H_h/2,t

(8)

(9)

where the last equation as related to y = - h/2 is valid only along the crack surface, namely, only
for x .;; c - (h /2), with c denoting the distance from the y -axis to the midpoint of that grid
interval, on y = 0, in which the crack terminates.

From conditions (6), on y = 0 and ahead of the crack, V =O. To satisfy this condition the V
displacement on y = -h/2 is approximated by

V(x, -h/2, 0 = - V(x, h/2, 0 for x ~ c +h/2. (10)

In constructing the approximations (8) and (9) we follow a method proposed by Alterman and
Rotenberg[13] which was also successfully employed in [12] and [14]. According to this method,
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derivatives perpendicular to the boundary are approximated by uncentered differences and
derivatives parallel to the boundary by centered differences. The real boundaries can then be
considered as located at a distance of half the mesh size from the grid boundaries (see Fig. 2).

From (10) and the relevant part of [9], it follows that the crack tip is confined to lie on the open
interval c - h/2 < x < c +h/2. As will become obvious later, any assumption concerning the
exact location of the crack tip has no bearing on results or conclusions drawn from the numerical
solution. The only occasion where it may have any significance is when comparing numerical and
experimental results. In this case, however, it is the complete crack length which counts, so that
any error introduced in locating the crack tip should be related to the full crack length. In [12] it
was shown that the crack tip may be approximately assumed as being located in the middle of the
above mentioned interval. By adhering to this assumption (which means that the value of c may
be identified with the crack length a) the error introduced in estimating the crack length cannot
exceed h /2. If, in addition, we refine the grid, the relative error can be reduced to at least the same
degree as the expected experimental errors.

The four grid corners require a special treatment. Different methods of handling the
discontinuities at such points have been proposed in the past[13, 14]. Here we found that
satisfactory results are obtained when the displacements sought are extrapolated from those
given along both sides of the corner in question. Accordingly, the U and V components at
(- h /2, - h /2) are given by

U U U
V (-h /2, -h /2, t) = V (h/2, -h/2, t) + V (-h/2, h /2, t)

- 0·5 [~(3h /2, -h/2, t) +~(-h/2, 3h/2, t) J. (11)

Similar expressions are used for deriving the displacement components at (-h/2, H +h/2),
(L + h/2, H +h/2) and (L + h/2, -h/2).

The method of prescribing the constant deflection D in the scheme needs some explanation. If
the deflection is prescribed at some point inside the grid, the loaded point should be part of a
boundary formed by cutting out a hole in the grid, so that a: multiply connected region is obtained
(see Fig. 2). To obtain a stable scheme the cutout should be sufficiently large. To keep the correct
proportions of the specimen, this would imply an extension of the grid requiring a larger memory
and consuming more computer time.

It is much more efficient to assign the constant deflection to a point on the boundaries of the
original simple connected region even if it is intended to simulate a practical situation in which
the deflection is prescribed at some point inside the specimen at a distance of, say, y = Yo < H
from the crack surface. In this case the point (0, yo) is displaced vertically to a distance D by
approximating the V -displacement of the respective grid point (-h /2, yo) by

V(-h/2, Yo, t) = 2D - V(h/2, Yo, t) for all t (12)

which overrides the displacement obtained previously at the same point in eqn (8). It will be
shown later that by so doing it is possible to define uniquely the location and the value of a
concentrated force which when applied to the specimen in question would yield a stress field
similar to the one obtained numerically.

The resulting stresses and displacements, as referred to in the subsequent discussion, are
related to points located at the middle of the mesh openings. These points will be designated
hereafter as material points, to distinguish them from the grid points used in deriving the solution.
Some material points are shown in Fig. 2.

In all cases described hereafter, the scheme was run with a dilatational wave velocity Ct = 1, a
specimen height of H = 1, and a material density of p = 1. The particular material investigated is
distinguished, in the scheme, by its Poisson ratio v which determines the distortional wave
velocity

(13)
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It is the ratio (C,/Cz)z = 2(1- v )/(1- 2v) that determines the upper bound for the ratio of the
time step to the space step a = kIh, with which the two-dimensional finite difference scheme is
still stable. An elementary stability analysis [15] shows that for v = 0·25 a should be less than
0·86 but might be greater if v is increased. To be on the safe side, we choose in all cases a = 0·8.

All calculations were performed on an IBM 370/168 computer. About one minute computation
time was needed for 600 time steps with a grid of about 1500 mesh points.

4. ACCURACY OF THE FINITE DIFFERENCE CALCULATION

The accuracy of the numerical scheme is checked via the static solution. As mentioned above,
the numerical solution converges to the static solution if () (see eqns 5 and 7) is different from
zero and positive. After some trials, it was found that the fastest convergency is achieved with ()
of about 0·05Ih.

Given (), we seek the largest possible mesh size for which results derived are still sufficiently
accurate. To this end, calculations are repeated for the same specimen with different mesh sizes.
Results were drawn for a specimen geometry of HlalL = 1/1/3, with the space increment h
taking, in turn, the values H/10, HilS, H/20, H/25 and H/28. The Poisson ratio chosen was
v = 0·395. This value corresponds to the sort of perspex from which specimens used in the
experiments, described later, were made. In all cases, the specimen is subjected to a constant
deflection D = H at the point (0, H 12), which is introduced in the scheme by the approximation
(12).

Every 100 time steps (i.e. iterations) the grid is scanned to find

s = max (I Vex, y, t + k) - vex, y, t)1 +Ivex, y, t +k) - vex, y, t)I);
o~ x ~ L, 0 ~ Y ~ H. (14)

Note that s is one of the possible measures for convergency of the solution. Beginning with the
400th time step, we calculate and record in addition the following variables:

(1) The value

(15)

which in the dynamic case equals the total kinetic energy but in the static case serves as an
additional indicator of the solution's convergency.

(2) The total potential energy Ep

with E standing for Young's modulus.
(3) The shear forces along the x axis for 0 < x < a

Q(x)= LR

O"Xy(x,y)dy.

(4) The axial forces on cross sections perpendicular to the x axis

F(x)= foR O"xx(x,y)dy for O<x <a.

(16)

(17)

(18)

(5) The strain-energy release rate which is evaluated by a method proposed by Rice[16]. It
was shown [17] that the path-independent integral

(19)
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gives the desired strain-energy-release rate. r is a curve surrounding the crack tip, W is the strain
energy density, Tr is the traction vector and U is the displacement vector. Due to symmetry it
suffices here to calculate the integral along a curve which lies only above the x -axis. The path
used is depicted in Fig. 2.

(6) The stress intensity factor K" which is obtained from J by

K, = (1 ::2) for plain strain. (20)

By employing the path-independent integral (19) in deriving K, we avoid referring to the
detailed configuration of stresses in the close neighborhood of the crack tip which would have
implied a relatively dense grid.

The integrations in (15)-(19) are performed by Simpson's rule, employing the subroutine QSF,
as provided by IBM [18]. The corresponding integrands are related to material points.

It was found that values of slH or Ek IC/pH 2 of the order of 10-4 or 10-7 respectively
indicate that the final solution has been reached, since further iterations give changes in values of
Ep or J which are less than 0·1% per 100 iterations. With mesh sizes smaller than H 120 values of
Ep , J or K differ by less than 1% from those obtained with h = H120. This confirms the validity
of the approximation used here and shows that there is no advantage in mesh sizes smaller than
H/20.

The imposed boundary conditions imply a constant shear force Q and a zero axial force F
along the crack arm. The calculated Q and F show only slight discrepancies from this situation
(see Fig. 6b). These discrepancies decrease with decreasing mesh size. The average of Q along
the crack arm is denoted hereafter as P. Differences in P due to changes in mesh size were found
to be less than 1%.

With P considered as a concentrated force which when applied to the specimen would yield
a stress field similar to the one obtained numerically, the work done by this force should be equal
to the strain energy Ep • Hence the deflection 8 at the point of the force application is given by
8 = 2Ep IP. Recall that in the scheme, the vertical displacement D was prescribed to the point
(0, H 12), in such a way that the cross section x = 0 is disturbed at a height H 12 above the crack,
but is otherwise stress-free. The force P may thus be envisioned as applied in the neighborhood
of (0, H12), at a point along y = H12, the vertical displacement of which is 8, provided it is found
to lie not too far from x = O. Given the V displacement component at the material points (0, H 12)
and (h, H12), the force point of application is found by a linear interpolation if 8 < D or by a
linear extrapolation if 8 > D. The horizontal distance from the force point of application to the
crack end, denoted hereafter by a*, is practically the distance from the vertical center line of the
loading pin to the crack end, referred to in the literature as the crack length. Given a*, the
distance from P to the free end of the specimen is then W = a* - a +L (see Fig. 2). By
employing the just-described technique of determining the dimensions of the specimen simulated
by the numerical scheme, we avoid working with the "multiply-connected region" problem.

5. SOME NUMERICAL AND EXPERIMENTAL RESULTS FOR THE STATIC CASE

Three classes of specimens were investigated. They are distinguished by their respective
geometry and material constants. In the first class, A, we treat relatively long specimens
(WIH = 3'06) with the objective of analysing geometries such as those which appear in the
dynamic problems of crack propagation and arrest [6, 7, 9]. The specimen geometry in the second
and third classes, Band C, is the one specified in ASTM Standard E 399-70 T (i.e. WIH = 1·667
and a*IW -0,45-0,55) known also as the compact specimen, for which detailed results are
available in the literature [4], obtained so far, numerically, by the collocation method. In each
class, keeping WIH constant, the scheme was run with a variety of crack lengths. In class A and
B the analysis was carried out with a Poisson ratio of II = O'395, corresponding to the Poisson
ratio of PMMA from which the experimental samples were made. In class C we change II to 0·3
in order to learn the effect of the material constants on the results, simulating in this case
specimens of steel.

The adequacy of the elastic solution proposed here was established by comparing the stiffness
81P as predicted by the numerical analysis with that obtained experimentally. To this end
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specimens cut out from 10 mm sheets of PMMA were machined to size and tested on an Instron
machine. The class A specimens (W/H = 3·06) were 90 mm long with W = 85·5 mm and a pin
diameter of 6 mm. The ratio between the pin diameter and the specimen height H, denoted
hereafter as {3, was, thus {3 = O· 215. Two sorts of class B specimens (W /H = 1,667) were tested.
The first 130 mm long with W = 120 and a pin diameter of 6 mm so that {3 is reduced to 0·083; the
second 75 mm long with W = 60 and the pin, as specified by the ASTM Standard, O· 25 W = 15 mm
in diameter so that {3 = 0·417. Special grips were constructed to ensure perfect alignment and
pure tension. The loading pins were separated at a constant rate of 0·2 mm/min. The load,
measured by a load cell, and the deflection, measured by an extensometer (see Fig. 1) were
continuously recorded. For the relatively low loading levels applied, the PMMA showed a linear
behavior. From the slope of the curve recorded, the stiffness of fj / P was determined.
Experimental results for class A and the two kinds of class B specimens are shown in Figs. 3 and
4 respectively. In these figures, the numerical non-dimensional results were divided by
C/p =622·3 kg/mm2 which corresponds to E = 301 kg/mm2 and v =0,395, which were the
material properties found experimentally for PMMA. From the excellent matching of
experimental and calculated results when {3 = 0,083, compared with the slight discrepancies
encountered with {3 =0·215 (for W/H = 3,06), and the greater discrepancies in case {3 =0,417,
recalling, in addition, that in the scheme, the disturbances caused by the load were restricted to
one mesh point, we may infer that the finite difference solution provides us with an accurate
picture of the static stress-strain field in the DeB, as long as the loading pin diameter is small
compared with the other dimensions of the specimen. If necessary, the scheme can be modified to
account also for larger pin diameters by solving the multiply-connected region problem as
previously mentioned.

From the fracture mechanics point of view, however, the fact that displacements are correctly
predicted by the scheme, although encouraging, is still not sufficient. The new proposed method
should be tested against its capability of predicting the correct stress intensity factor, as well.
This is done by comparing the stress intensity factors K, as derived from the present solution
(eqn 20) with established values from the literature (Table 1). For each case listed in Table 1, we
evaluate and record the dimensionless coefficients: Nt = K,H 3/2/Pa* as suggested in [2],

a.
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Fig. 3. Relation between stiffness and crack length for case A specimens (W/H = 3·06; v = O'395).
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Fig. 4. Relation between stiffness and crack length for case B specimens (compact specimen; v = 0,395).



The DCB problem in fracture mechanics

Table 1.

-
KI/C~0Ht N ==~~ N2=*~~6+~ N,=~t-Se rlal ~cimen charac. R, R,

No. Class a*/U 1 Pa*

1 A 0.275 0.1681 5.9606 2.3735 8.7454 1. 039

2 lV/H=3.06 0.310 0.1508 5.5971 2.2978 9.2619 1. 026 not

3 ·",=0.395 0.346 0.1356 5.1765 2.1620 9.6028 1. 001 avail·

4 0.380 0.1232 5:12 70 2.1330 10.4060 0.979 able

5 (PMMA) 0.412 0.1115 4.7838 1.9747 10.5745 0.982

6 0.446 0.1016 4.6451 1.8761 11.1161 0.978

7 0.465 0.2057 8.9976 1. 4 316 9.0132 1. 0 35 1.041

8 B 0.487 0.2008 9.1976 1.4291 9.6708 1. 042 1. 046

9 lV/H=1. 666 0.509 0.1959 9.4722 1.4304 10.4278 1. 051 1. 05 7

10 v=0.395 0.531 0.1911 9.8076 1. 4339 11.3160 1. 060 1. 069

11 (PMMA) 0.554 0.1864 0.2442 1.4431 12.3677 1.074 1. 084

12 0.443 0.2997 9.0010 1.4601 8.5871 1. 046 1. 049

13 C 0.464 0.2914 9.1422 1. 4528 9.1266 1. 050 1. 054

14 lV/H=1. 666 0.486 0.2833 9.3097 1.4474 9.7521 1. 053 1. 058

15 v=O .. 3 0.508 0.2755 9.5649 1.4413 10.4587 1.059 1. 065

16 (steel) 0.530 0.2680 9.8541 1. 4373 11.2769 1.063 1.071

17 0.551 0.2602 0.2332 1.4360 12.1823 1.068 1.078

75

N2=K1(W-a*)3/2/P(2W+a*) as suggested in [4], and N3=KIWI/2/p given in ASTM
Standard as a function of a*/W. The ratio R2 between N2 and the value obtained by interpolating
(or extrapolating, if necessary) the data given in [4, Table 3], and the ratio R 3 between N 3 and the
corresponding coefficient provided by the ASTM Standard (f(a*/W) there) are respectively
recorded in column 7 and column 8 of Table 1.

In the values of both R 2 and R 3, results drawn from the present analysis are compared with
results derived by the boundary collocation analysis [2,4] which to the best of our knowledge is
the most elaborate method used so far for handling the DCB crack initiation problem. The two
approaches just mentioned differ by the kind of boundary value problem solved by them. Note
that in the present analysis a mixed boundary value problem was solved, since a displacement
condition at one of the boundary points was satisfied with the remaining boundary left traction
free. At least for relatively small loading pins it was shown to be an appropriate way of handling
the DCB problem. The collocation procedure, however, applied in conjunction with Williams'
stress function (or, alternatively, with Airy stress function [19]) is confined to cases where, on the
boundary, only tractions are prescribed (known also as the first fundamental boundary value
problem in elasticity [20]). Thus, to tackle the DCB problem by the last-mentioned method, some
kind of assumption should be made as to the stress distribution along (or nearby [2]) the resultant
force line of action. The distribution of shear and normal stresses along some cross sections of
the compact specimen crack arm (cases 10 and 14 of Table 1) as obtained from the present
analysis, are depicted in Figs. 5 and 6. The distribution near the resultant force is seen to be quite
different from the parabolic distribution of shear stresses assumed by Srawley and Gross [4] or
the linear one assumed by Wiederhorn et al. [5]. Nevertheless, as demonstrated by the values of
R 2 and R 3 in Table 1, the K 1 values predicted by the finite difference analysis are very close to
those obtained by the boundary collocation analysis. It seems that the affect of the specific
condition prescribed at the loaded end of the specimen, on the K1 value is small. Practically, it
means that experimental measurements of K 1C would hardly help in deciding upon which of the
numerical methods is more accurate. Nevertheless, we may conclude that the finite difference
method suggested here is well adapted for handling the DCB fracture problem.

6. PRELIMINARY RESULTS FOR THE DYNAMIC CASE

Encouraged by the satisfactory results obtained from the finite difference analysis in the static
case and recalling that essentially the same scheme, with one minor change (reducing (J to zero)
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y
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V=0.395

Fig. 5. Shear and normal stress distributions in the DCB.

may control a dynamic situation, we proceed towards examining the crack propagation problem.
To decide upon which of the two possible fracture criteria (i.e. stress or energy) is the appropriate
one, we may, as suggested in [8], axiomatically accept each of them and check the consequences.
Preliminary results obtained here from the two dimensional dynamic solution seem to favor the
stress criterion.

The simulation of a fracturing process in a DeB runs as follows. Given the specimen
geometry and its material constants we first solve the static problem in the way previously
described. The solution is assumed to approximate the static state when s (as defined in (14)) is
less than 0·25 10-4

• At this stage the U yy stress level at (c +h /2,0), denoted hereafter as U q , is
recorded, (J is reduced to zero and the crack is extended by one grid interval. In the following
time steps the boundary conditions related to the crack length, eqns (9) and (0), are applied while
taking into account the fact that c was enlarged by one grid interval. The other boundary
conditions, including the constant displacement at (0, H /2), remain unchanged. As a result of the
above described changes, a dynamic state of stress is built up in the specimen. In particular the
U yy stress level at (c + h /2,0) begins to rise. When this stress level reaches a prescribed critical
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CTxx

(0)

Fig. 6. Shear stresses, normal stresses and force distribution in the DCB.
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value ac, the crack is further extendeli by one grid interval. The crack now continues to grow, by
one grid interval at a time, as long as the ayy stress level ahead of the propagating crack tip
reaches the value of ac • The crack is assumed to be arrested, when a relatively long time passes,
after the last extension, with the ayy stress level, ahead of its tip, remaining below the critical
value ac • During the propagation stage the time that elaspses between two sequential extensions
is recorded and the corresponding velocity is evaluated.

The above described procedure was conducted, keeping the same geometry and material
constants, with various values of ac, which is chosen to be either equal to or less than aq. Note
that by changing the ratio aqlac we actually change the conditions under which the fracture is
initiated. In fact, a aq > ac indicates that the stress intensity factor (Kq ) at initiation is higher
than K 1c . Such a situation is in practice encountered with a blunted crack tip.

Some results are described in Figs. 7 and 8. The results are related to a specimen which
was tested by Hahn et at. as described on page 9 of [9]. (The pin diameter in the specimen
mentioned was f3 = 0·40 time the height H). In the numerical scheme the relations a*IHIW were
accordingly chosen to be 1'075/1/4·4 and lJ == O' 3. When interpreting the results it should be
remembered that at each time step, stresses undergo finite changes, therefore, when crack
extension occurs, the stresses at the point (c +h/2, 0) almost always exceed the critical stress
value ac (in each extension by a different amount). Moreover, the time that passes between two
extensions is an integral multiple of the time increment k, so that for each value of a == kIh the
numerical scheme may yield only discrete values of velocities. Nevertheless, results were
remarkably insensitive to the choice of a.

Starting with aqlac == 1 and increasing this ratio by 0·125 at a time, eleven different fracture
initiation conditions were investigated, the last of which corresponds to aqlac == 2·25. For
aqlac == 1 we found that the crack, although initially extended by one grid interval, does not
continue to grow. In all other cases the crack propagates for a while and then stops. The
extension of the crack in the course of time for two values of aqlac is given in Fig. 7 which
shows that while crack propagation does not occur at a precisely constant velocity, the crack
length-time plots are close to being linear. This happens in the other cases as well. The velocity
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Fig. 7. Assorted crack length time data for two initiation conditions.
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Fig. 8. Relation between crack velocity and crack growth.
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fluctuations, which are remarkable for small value of aqlac and diminish when this ratio
increases, may be attributed to the stress waves which return from the free boundaries. For
reference, the time intervals T1 and T2 required for dilatational and distortional waves respectively
to travel from the crack plane to the lateral surface and return, are also shown in Fig. 7. Reasonable
correlation obtained between the time intervals mentioned and the intervals elapsing between
successive points indicating velocity changes. Notice also that the crack length at arrest au and the
crack speed increase with aqlac. When all cases are considered it is found that both au and the
crack speed are single valued monotonically increasing functions of aqlac.

Perhaps the most important findings of the present research are the agreements between the
predictions of the finite difference analysis and the experimental observations reported by Hahn
et al. [9]. According to the last authors, crack propagation and arrest in the DCB specimen can be
characterized by the following: "(1) The crack propagates at an essentially constant steady-state
velocity from the start. (2) The steady state velocity is not an invariant but depends on the initial
conditions, i.e. the bluntness of the starting slot. (3) For a given DCB configuration, material
density and modulus, the crack velocity and arrest length are separate single value functions of R
or Kd." Rand Kd are respectively defined as "the dynamic fracture energy and fracture
toughness of a fast running crack." Here, however, the notion of Kd is replaced by the critical
stress criterion ac • It was further noticed that the present analysis succeeds in approximating the
experimental measurements quantitatively as well.

In Fig. 8 we compare the numerical results derived here with experimental measurements
reported in [9] of the relation between crack velocity and crack length at arrest. By the
numerically calculated crack velocity in this figure, we mean the average of the velocities
encountered during the propagation. This average might deviate from the velocity obtained by
drawing a straight line through the points appearing in the crack length-time plots, particularly for
smaller ratios of aqlac. In Fig. 8 we show also the curve obtained from the one dimensional
Timoshenko beam model proposed by Kanninen[9]. This model has also been shown[7, 8] to
predict the same kind of behaviour of the propagating crack in the DCB as was previously
described.
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